

Advanced Smart Munitions

- a designer's perspective
 - New Missions
 - New Challenges
 - New Solutions

Briefing to the NDIA Firepower Symposium

June 21, 2000

Abraham Shrekenhamer

Aerojet

The Evolving Battlefield

- Fluidity -
 - Rapid force movements by friend and foe alike
- Digitization
 - Improved surveillance and communications and situational awareness
- More Urbanized Terrain
 - Impediment to movement and sensors
 - Combatants mixed with non-combatants
- ◆ Increased Fire Support Delivery Range And Accuracy
 - Gliding projectiles, guided rockets and ballistic missiles, cruise missiles
- ◆ Diversified Target Arrays
 - Trend towards greater dispersion / lower density
 - Mixed target element types (high and low value) in same area

Diversified Targets In Complex Scenarios

Counterfire

• Small, mobile artillery units: towed, SPH's, MRL's, mixed with support vehicles

Interdiction

- Armored columns on road or cross country march
- Assembly areas with tanks, SPH's, trucks

High Value / Low Density

- SRBM/MRBM TEL
- Air defense units

Target Tactics

- Frequent maneuvering -- "Shoot & Scoot"
- When stationary -- emplaced in treelines, under nets, with decoys
- Exploit urbanized terrain for masking and protection whenever possible
- Proximity to noncombatants

Scenarios Drive Smart Submunition Required Sensor Footprint And Signature Complexity

Target Location Error + System Delivery Error

Smart Submunition Key Impact Is AEROJET On The Sensor

- Flexible Target Acquisition Footprint (Sensor Detection Range)
 - Maneuvering target sets at depth
 - Initial target acquisition errors
 - C³I delays
 - Submunition carrier flyout delays
 - Collateral damage considerations
- Improved Target Detection (Sensor Use Of Scenario Context)
 - Targets in urban clutter
- Target Classification
 - Attack high value targets preferentially in mixed target scenarios
 - Collateral damage considerations
 - Bias warhead aimpoint to a target-specific center-of-vulnerability and control warhead pattern

Available Sensor Technologies AEROJET

Imaging LADAR

limited all-weather capability, good target classification, potentially good detector of targets in urban environments

MMW

all-weather, increased detection range capable, limited target classification capability

Imaging IR

moderate all-weather capability, moderate target classification

Imaging Visible

low cost, requires nocturnal illuminators, limited by weather

Acoustic

all-weather, susceptible to decoys, ineffective against targets with engines shut down, requires a "quiet" submunition

Magnetic

limited footprint, limited sensitivity against aluminum-hulled targets

MMW Sensor Technologies Aim At Improved AEROJET Target-To-Clutter Ratio At Extended Ranges

IR-LADAR Imagery Fusion Demonstrates AEROJET The Value Of A Multi-EO-Sensor Approach

Fused IR-LADAR Sensors Enable Target Detection And Classification In Heavy Clutter

Summary

- Evolving missions for smart munitions create technological challenges for sensors
 - Tailored footprint and detection range.
 - Target classification.
- Aerojet is meeting these challenges by ongoing work in:
 - MMW radars with range binning and higher operating frequencies.
 - Combined LADAR-IR imaging sensors.
 - Advanced signal processing.